	CLASS-XII		
	RELATIONS AND FUNCTIONS KEY POINTS		
	TYPES OF RELATIONS		
	MULTIPLE CHOICE QUESTIONS		
Qn.1	Let R be a relation on the set N be defined by $R = \{(x, y) \forall x, y \in N, 2x + y = 41\}$. Then, R is		
	(a) Reflexive (b) Symmetric (c) Transitive (d) None of these		
Qn.2	For real numbers x and y, we write x R y \leftrightarrow x – y + $\sqrt{2}$ is an irrational number. Then, the relation R is		
	(a) Reflexive (b) Symmetric (c) Transitive (d) None of these		
Qn.3	The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)} on set A = {1, 2, 3} is		
	(a) Reflexive but not symmetric (b) Reflexive but not transitive		
	(c) Symmetric and transitive (d) Neither symmetric nor transitive		
Qn. 4	Consider the non-empty set consisting of children in a family and a relation R defined as a R b if a is brother of b. Then R is		
	(a) symmetric but not transitive		
	(b) transitive but not symmetric		
	(c) neither symmetric nor transitive		
	(d) both symmetric and transitive		
Qn. 5	Let $P = \{(x, y) : x^2 + y^2 = 1, x, y \in R\}$. Then, P is		
	(a) Reflexive (b) Symmetric (c) Transitive (d) Anti-symmetric		
Qn.6	Let S be the set of all real numbers. Then, the relation $R = \{(a, b) : 1 + ab > 0\}$ on S is		
	(a) Reflexive and symmetric but not transitive		
	(b) Reflexive and transitive but not symmetric		
	(c) Symmetric, transitive but not reflexive		
	(d) Reflexive, transitive and symmetric		

Qn.7	Let R be the relation in the set Z of R = $\{(x, y) : x - y \text{ is an integer}\}$. The set Z of R = $\{(x, y) : x - y \text{ is an integer}\}$.	_	ed by
	(a)reflexive (b) symmetric (c) transi	itive (d) an equiv	alence relation
Qn.8	For the set A = $\{1, 2, 3\}$, define a relation R in the set A as follows R = $\{(1, 1), (2, 2), (3, 3), (1, 3)\}$ Then, the ordered pair to be added to R to make it the smallest equivalence relation is		
	(a) (1, 3) (b) (3, 1)	(c) (2, 1)	(d) (1, 2)
Qn.9	Let A = $\{1, 2, 3\}$ and R = $\{(1, 2), ($ the minimum number of ordered pa becomes an equivalence relation, is	irs may be added	
	(a) 7 (b) 5	(c) 1	(d)4
Qn.10	Let A = $\{1, 2, 3\}$. Then, the number $(1, 3)$, which are reflexive and symmetry (a) 1 (b) 2		
Qn.11	Let $f : R \rightarrow R$ be a function defined b (a) Injective (b) Surjective these		
Qn.12	Let X = {0, 1, 2, 3} and Y = {-1, 0, 1, 4, 9} and a function f :X \rightarrow Y defined by y =x ² , is (a)one-one onto (b) one-one into (c) many-one onto (d) many-one into		
Qn.13		(b) g is not one-o (d) None of these	
Qn.14	The mapping $f : N \rightarrow N$ given by $f(n)$ of natural numbers, is (a) a one-one function (c) a bijection	(a) a one-one function (b) an onto function	
Qn.15	The function f: $R \rightarrow R$ given by $f(x) =$ (a) a one-one function (c) a bijection	= x ³ – 1 is (b) an onto fun (d) neither one-	

Qn.16	A function $f : X \rightarrow Y$ is said to be onto, if for every $y \in Y$, there exists element x in X such that		$y \in Y$, there exists an
	(a) $f(x) = y$ (b) $f(y) = x$	(c) $f(x) + y =$	0 (d) $f(y) + x = 0$
Qn.17	Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. (a) R is reflexive and symmetric but not transitive (b) R is reflexive and transitive but not symmetric (c) R is symmetric and transitive but not (d) R is equivalence relation		
Qn.18	Let A = $\{1, 2, 3\}$ and B = $\{a, b, c\}$ functions from A to B are		
	(a) 2 (b) 8	(c) 6	(d) 4
Qn.19	The number of surjective functions and $B = \{a, b\}$ is	from A to B w	here $A = \{1, 2, 3, 4\}$
	(a) 14 (b) 12	(c) 2	(d) 15
Qn.20	The function $f : R \rightarrow R$ defined by f (a) one-one but not onto (c) both one-one and onto	(b) onto	x – 2) (x – 3) is but not one-one ner one-one nor onto
	OBJECTIVE	QUESTIONS	
Qn.1	If $A = \{1,2,3\}$ and $R = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$ Then, the ordered pair to be added to R to make it the smallest equivalence relation is		
Qn.2	Check "xy is square of an integer x, $y \in N''$. Above relation is (Reflexive, symmetric and transitive.)		
Qn.3	Give an example of a function which is one-one but not onto		
Qn.4	Let D be the domain of the real valued function f defined by $f(x)=\sqrt{25-x^2}$. Then, write D		
Qn.5	If $g = \{(1, 1), (2, 3), (3, 5), (4, 7), g(x) = ax + b$, then value of a is		
Qn.6	Let the function f: $R \rightarrow R$: be defined by $f(x) = \cos x$; $\forall x \in R$. Show that f is neither one-one nor onto.		
Qn.7-10	MATCH THE FOLLOWING		

	7. f: $R \rightarrow R$: f(x)= x^2 (i) Neither one one nor onto		
	8. f: $R \rightarrow N$: f(x)= x^2 (i) We there one one horomorphic of the field of the fie		
	9. $f: Z \rightarrow Z : f(x) = x^3$ (ii) One one and into (iii) Many one and onto		
	10. $f: N \rightarrow N : f(x) = x^2$ (iv) One one but not onto		
	10. 1. $N \rightarrow N$. $I(x) = x^2$ (iv) one one but not onto		
Qn.11	Examine if the relation g $=\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$ is one one onto Statthe reason.	te	
Qn.12	If $R = \{(x, y) : x + 2y = 8\}$ is a relation in N, write the Domain of R	>	
Qn.12 Qn.13	If a function f:X \rightarrow (-1,1) defined by y=cosx is one-one and onto	<u>`.</u>	
	function, then value of X=		
Qn.14	Let A be the set containing 'm' distinct elements, then the total number of distinct functions from A to itself is :		
Qn.15	If $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3\}$, then number of mappings from A to is	В	
Qn.16	is If $f:[0,\frac{\pi}{2}] \rightarrow [0,\infty]$ be a function defined by $y=sin(\frac{x}{2})$, then f is(injective/surjective/bijective)		
Qn.17	If a function $f:[2,\infty) \rightarrow B$ defined by $f(x)=x^2-4x+5$ is a bijection, the	en	
	B=		
Qn.18	Let $R = \{(a, a^3): a \text{ is a prime number less than } 4\}$ be a relation. Then the range of R is		
Qn.19	If a relation R on the set {I, 2, 3} be defined by $R = \{(1, 2)\}$, then R is(reflexive/symmetric/transitive)		
Qn.20	Let $f: R \rightarrow R$ be defined by $(x) = x^2 + 1$, then pre-image of 17 and -3, respectively, are		
	SHORT ANSWER QUESTIONS		
Qn.1	Find the type of relation, which is describes as the relation "less than" in the set of natural numbers.		
Qn.2	Show that the function $f : N \rightarrow N$ given by $f(x) = 2x$ is one-one but not onto		
Qn.3	Show that the function: $f : N \rightarrow N$ given by $f(1) = f(2) = 1$ and $f(x) = x - 1$, for every $x > 2$ is onto but not one-one.		
Qn.4	If $R = \{(x, y) : x + 2y = 8\}$ is a relation in N, write the range of R.		
Qn.5	If the function $f: R \rightarrow A$ given by $(x) = \frac{x^2}{x^2 + 1}$ is a surjection, then find A		
Qn.6	If the relation R is defined by aRb , if and only, if b lives within one kilometer from a , then check if the relation is reflexive, symmetric or transitive.		

{(a,a), (b,c), (a, b)} Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive. If R={(x,y): $x^2+y^2 \le 4$; $x, y \in Z$ } is a relation on Z,find the range of R. Give an example of a relation which is symmetric and transitive but not reflexive. Show that f:N \rightarrow N defined by f(n)= $\begin{cases} \frac{n+1}{2} & if \ n = odd \\ \frac{n}{2}, & if \ n = even \end{cases}$ is many onto function
pairs to be added in R to make R reflexive and transitive. If $R = \{(x,y): x^2+y^2 \le 4; x, y \in Z\}$ is a relation on Z,find the range of R. Give an example of a relation which is symmetric and transitive but not reflexive.
pairs to be added in R to make R reflexive and transitive.If $R = \{(x,y): x^2 + y^2 \le 4; x, y \in Z\}$ is a relation on Z,find the range of R.Give an example of a relation which is symmetric and transitive but
pairs to be added in R to make R reflexive and transitive.
Let $A = \{a, b, c\}$ and the relation R be defined on A as follows $R =$
Let A = $\{a, b, c\}$ and the relation R be defined on A as follows R = $\{(a, a), (b, c), (a, b)\}$ Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.
Prove that the relation= {a-b=even numbers} defined on a set of integers is equivalence relation.
Write the smallest equivalence relation of the set $A = \{1, 2, 3\}$
If a function f is defined as $\{(1,1)(2,3)(3,5)(4,7)\}$ is described as $f(x) = ax + b$, find a and b.
Find the range of $f(x) = \frac{x}{x+1}$
If <i>R</i> denotes the set of all real numbers, then the function $f:R \rightarrow R$ defined by $(x)= x $ is neither one- one nor onto. Justify the statement.
Find the maximum number of equivalence relations on the set $A = \{1, 2, 3\}$
On the set of integers Z, define $f:Z \rightarrow Z$ as $f(n) = \begin{cases} \frac{n}{2} & \text{if } n = odd \\ 0, & \text{if } n = even \end{cases}$ then Check whether the function is injective or surjective or none.
On the set of integers T define $(T, T, T, n \in f(x))$ $\left(\frac{n}{2} if n = odd\right)$ then
Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x > 3 \\ x^2 & \text{if } 1 < x \le 3 \\ 3x & \text{if } x \le 1. \end{cases}$, Then find the value of $f(-1) + f(2) + f(4)$
Let $f(\mathbf{P}) \ge \mathbf{P}$ be defined by $f(x) = \begin{pmatrix} x & \text{if } x > 3 \\ x^2 & \text{if } 1 < x < 3 \end{pmatrix}$ Then find the value of
The function $f: X \rightarrow Y$ defined by $f(x) = \sin x$ is one-one but not onto, then find X and Y.

Qn.1	Aman and Ramesh are playing Ludo at home during Covid-19.While rolling the dice, Aman's sister Lata observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$.Let A be the set of players while B be the set of all possible outcomes. Let $A=\{A,R\},B=\{1,2,3,4,5,6\}$.Using the information given above, answer the following: (i)Let R:B→B be defined by R ={ $(x,y): y = x$ }is (a)Reflexive and transitive but not symmetric (b)Reflexive and symmetric but not transitive (c)Reflexive but not symmetric and transitive (d)Equivalence	
	(ii) Let R :B \rightarrow B be defined by R={(1,2)(2,2)(1,3)(3,4)(3,1))(4,3)(5,5)}.Then R is (a)Symmetric (b) Reflexive (c) Transitive (d) None of these three	
	(iii) Let R :B→B be defined by $R=\{(2,1)(1,2)(2,2)(3,3)(4,4)(5,5)(6,6)\}$,then R is (a)Symmetric (b) Reflexive and Transitive (c) Transitive and symmetric (d) Equivalence	
	(iv) Lata wants to know the number of relations possible from A to B .How many relations are possible? a)36 (b) 64 (c) 6! (d) 2 ¹²	
	(v) Lata wants to know the number of functions from $A \rightarrow B$, How many numbers of functions are possible? (a)36 (b) 64 (c) 6! (d) 2^{12}	
Qn.2	Ved visited the exhibition along with her family. The exhibition had a huge swing which attracted many children. Ved found that the swing traced the path of a parabola as given by $y=x^2$. Answer the questions, using the above information: (i) Let f: $R \rightarrow R$ be defined by $f(x)=x^2$ is (a) Neither surjective nor injective (b) surjective (c) Injective (d) Bijective	
	(ii) Let f: $N \rightarrow N$ be defined by $f(x) = x^2$ is (a) Surjective but not injective (b) Surjective (c) Injective (d) Bijective	
	(iii) Let $f:\{1,2,3,,\} \rightarrow \{1,4,9,\}$ be defined by $f(x)$. Then $f(x) = x^2$ (a) Surjective but not injective (b) Neither surjective nor injective (c) Injective but not surjective (d) Bijective	

	(iv) Let f: $N \rightarrow R$ be defined by $f(x) =$	x^2 .Then, range of the function	
	among the following is		
	(a) {1,4,9,16}	(b) {1,4,8,9,10}	
	(c) {1,4,9,15,16,}	(d) {1,4,8,16,}	
	(v) If the function f: $Z \rightarrow Z$ be define	$f(x) = x^2$ is	
	(a) Neither surjective nor injective		
	(c) Injective	(d) Bijective	
Qn.3	parallel to each other to one side of had enough play area. Let us assure the saplings along the line y=2x+4 are parallel on the ground and R be following, using the above informat (i) Let R be a relation defined by R L},then R is relation (a) Equivalence	e a relation on L. Answer the tion: $R = \{(L_1, L_2): L_1 \parallel L_2 where L_1, L_2 \in (b) only reflexive$	
	(c) Not reflexive	(d) Symmetric but not transitive	
	but not transitive and refl (b) (iii) Let function f:R→R be defined	xive (c) Transitive (d) Symmetric exive	
	(c) Injective but not surjective		
	by		
	(a) y=x+c	(b) y=2x+k	
	(c)y=-2x+k	(d) y=-x+k	
	(v) Let function f:R→R be defined (a)R (b)Z	by $f(x)=2x+4$, then range of $f(x)=$ (c)W (d)Q	
Qn.4	A Robot works on the software whi	ch follows function $f(x) = \frac{x-2}{x-1}$. If the	
	 value of domain is put in place of x various works. Based on the above following: (i) What will the value/values of x (a)On all real values (c)On all real values except 2 	This robot works and performs in information, answer the ,on which this robot works (b)On all real values except 1	
	(ii) If range denotes the number of the works performed will be	f works performed, then range of	

	(a) <i>R</i> - {1}	(b) $R - \{2\}$	
	(c) $R - \{1,2\}$	(d)On all real values	
	(iii) If this function is defined from (a)Injective	f:R-{1}→ R – {1} (b) Surjective	
	(c)Bijective	(d) Into	
	(iv) If a Robot follows the f:R-{1}- (a)Injective (c)Bijective	 → R,then f(x) is (b) Surjective (d) Into 	
	(v) If a Robot follows the f:N-{1}- (a)Injective	$R = \{1\}, \text{then } f(x) \text{ is}$ (b) Surjective	
	(c)Bijective	(d) Into	
Qn.5	An organization conducted bike race under 2 different categories – boys and girls. Totally there were 250 participants. Among all of them finally three from category -1 and two from category-2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let $B = \{b_1, b_2, b_3\} G = \{g_1, g_2\}$, where B represents the set of boys and G the set of girls who were selected for the final race. Ravi decides to explore these sets for various types of relations and functions.		all of them re selected participants B selected for
	(i). Ravi wishes to form all the relations possible from B to G .Ho many such relations are possible?		
	(a)2 ⁶ (b) 2 ⁵	(C) 2 ³	(d) 0
	 (ii). Let R:B→B be defined by R={(sex},Then this relation R is	ot transitive	nts of same
	(iii). Ravi wants to know among those relations, how many functions can be formed from B to G?		y functions
	(a) 2^2 (b) 2^{12}	(c) 3 ²	(d) 2 ³
	(iv). Let R: $B \rightarrow G$ be defined by $R = \frac{1}{2}$	$\{(b_1,g_1)(b_2,g_2)(b_3,g_1)\},$	then R
	(a)Injective (c)Neither Surjective nor Injective	(b)Surjective (d)Surjective and	I Injective

	 (v) Ravi wants to find the number of injective functions from B to G .How many numbers of injective functions are possible. (a)0 (b)2! (c)3! (d)0! 		
	LONG ANSWER QUESTIONS		
Qn.1	Let A = R- {3}, B = R-{1}. If f: A \rightarrow B be defined by f(x) = $\frac{x-2}{x-3}$, $\forall x \in A$. Then, show that f is bijective		
Qn.2	If A = {1, 2, 3, 4} define relations on A which have properties of being (i) reflexive, transitive but not symmetric. (ii) Symmetric but neither reflexive nor transitive. (iii) Reflexive, symmetric and transitive		
Qn.3	Let $A = \{ 1, 2, 3, 4, \dots, 9 \}$ and R be the relation in A X A defined by (a,b) R (c,d) if $a + d = b + c$ in AXA . Prove that R is an equivalence relation and also obtain the equivalent class. [(2, 5)].		
Qn.4	Let $A = N \times N$ be the set of ail ordered pairs of natural numbers and R be the relation on the set A defined by (a, b) R (c, d) iff ad = bc. Show that R is an equivalence relation		
Qn.5	Show that the relation R on R defined as $R = \{(a, b): a \le b\}$, is reflexive and transitive but not symmetric.		
Qn.6	Let $A = (x \in Z : 0 \le x \le 12)$. Show that $R = \{(a, b) : a, b \in A; a - b \text{ is divisible by } 4\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2].		
Qn.7	Check whether the relation R in the set R of real numbers, defined by : $R = \{(a, b): 1 + ab > 0\}$, is reflexive, symmetric or transitive.		
Qn.8	Let N denote the set of all natural numbers and R be the relation on N x N defined by : (a, b) $R(c,d)$ is $ad(b + c) = bc(a + d)$. Show that R is an equivalence relation		
Qn.9	Let f: $R^+ \rightarrow [-9,\infty)$ be a function defined as : $f(x) = 5x^2 + 6x - 9$. Show than $f(x)$ is bijective		
Qn.10	Let f: $[-1,\infty) \rightarrow [-1,\infty)$ is given by $f(x) = (x^2 + 1)^2 - 1$, $x \ge 1$. Show that f is bijective		